Biotechnology and Bioprocess Engineering 2017; 22(6): 659-670  
Multiple Growth Factor Delivery for Skin Tissue Engineering Applications
Uiseon Park and Kyobum Kim*
Division of Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
© The Korean Society for Biotechnology and Bioengineering. All rights reserved.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
Administration of exogenous growth factors (GFs) to a damaged site has been investigated for skin tissue regeneration. Among the many types of GFs and cytokines, epidermal growth factor, vascular endothelial growth factor, platelet-derived growth factor, fibroblast growth factor, and hepatocyte growth factor could be specifically used for stimulating molecules in wound healing as well as for recovery of damaged skin tissues. It is speculated that delivered GFs could stimulate various cellular functions, including proliferation, migration, deposition of extracellular matrix molecules, and remodeling of collagen synthesis. Although the physiological wound healing process is complex, engineering strategies for proper delivery of multiple therapeutic GFs could enhance the quality and quantity of regenerated skin tissues. As compared to single delivery of a GF, recent studies have proven that any combination of multiple GFs and/or therapeutic chemical factors synergistically facilitates the regeneration of damaged skin tissues. In order to maximize the stability, bioactivity, intrinsic therapeutic functionality, and efficiency of internal delivery of cargo GFs, it is essential to utilize tissueengineered biomaterials and related composites as implantable platforms. Successful fabrication and development of skin tissue engineering applications as well as subsequent surgical implantation of these platforms might provide clinical treatment for superior skin regeneration. Therefore, the present review summarizes the biological functions, related signaling mechanisms, and recent developments of tissue engineering applications for multiple GF delivery.
Keywords: skin tissue engineering, growth factor delivery, biomaterials, wound healing, skin regeneration


This Article

Archives